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It is assumed that a crystal structure in P 1 is fixed and that the random variables (vectors) h,k,l,m, 
subject to h-I-k+ 1 + m= 0, are uniformly and independently distributed in reciprocal space. Then the 
seven structure factors Eu, Ek, El, Em, Eu ÷ k, Ek + ~, El + u, as functions of the primitive random variables 
h, k, 1, in, are themselves random variables, and their joint probability distribution is found. This distribu- 
tion plays the central role in the theory and estimation of the cosine invariants cos (~0k + ~0k + ~O~ + ~0m). 

1. Introduction 

Probability distributions were introduced into X-ray 
crystallography by Wilson (1949). A few years later, the 
concept of the joint distribution of two or more struc- 
ture factors was introduced (Hauptman & Karle, 
1953) and its importance as a method for phase 
determination demonstrated. In this early work, and 
in most of the work which followed (e.g. Klug, 1958), 
one or more reciprocal vectors were supposed to be 
fixed and the atomic coordinates were assumed to be 
independent random variables which were uniformly 
distributed. The structure factors, as functions of the 
atomic coordinates, are then random variables them- 
selves, and it was on this basis that their probability 
distributions were derived. Some time later (Hauptman 
& Karle, 1958; Karle & Hauptman, 1958) the crystal 
structure was assumed to be fixed, as well as one or 
more reciprocal vectors hi, h2 , . . . ,  and a single vector 
k was assumed to be a random variable, uniformly 
distributed throughout reciprocal space. The structure 
factors, as functions of the primitive random variable 
k, are again random variables, and their probability 
distributions could again then be found. It was 
emphasized that the former distributions, based on 
atomic coordinates as the independent random 
variables, are conceptually quite distinct from the 
latter in which it is assumed that the primitive random 
variable is the reciprocal vector k. It is of course the 
latter distributions which are more important in the 
applications since one is usually confronted with a 
fixed, but unknown, crystal structure; and a set of 
structure-factor magnitudes sampled from reciprocal 
space is also available. For this reason only the latter 
kind of distribution is considered here. 

In the recent past Tsoucaris (1970), employing the 
central limit theorem, derived improved distribu- 
tions for any number of structure factors. More 
recently Hauptman (1971, 1972), using new techniques 
to perform the necessary integrations, obtained still 
more accurate distributions, at least for the case of two 
and three structure factors. In the present paper these 
latter techniques are generalized to include the case 
that the number of primitive random variables (recip- 

rocal vectors) is greater than one. The importance of 
this generalization is that it permits the study of the 
joint probability distributions of arbitrary sets of 
structure factors, their mutual correlations and their 
combined action in affecting the value of a structure 
invariant. 

It has become increasingly clear in recent years that 
the cosine invariants and seminvariants play the central 
role in direct phase determination in that they link the 
observed magnitudes with the desired phases of the 
structure factors. Thus the individual phases are 
uniquely determined by the values of the cosine 
invariants and seminvariants (Hauptman, Fisher, 
Hancock & Norton, 1969) and the latter, in turn, 
depend essentially on the values of a relatively few 
appropriately chosen structure-factor magnitudes 
(Hauptman, 1974a, b). [In order to insure that 
magnitudes determine unique values for the cosines it 
is necessary to assume that no homometric solutions, 
other than enantiomorphs, exist,* and this assumption 
is made throughout. However, bimodal distributions, 
when used as estimators for the invariants, may have 
the potential for sorting out homometric solutions, and 
this possibility is briefly discussed in the accompanying 
paper (Hauptman, 1975).] It has also become clear that 
the nature of the dependence of these cosines on the 
selected magnitudes is related in an important way to 
the mutual correlations of the magnitudes, and the 
latter depend in turn on appropriately chosen prob- 
ability distributions of several structure factors. Thus 
a major aim in writing the present paper is to show, by 
working out in some detail the important case of seven 
structure factors, how the required probability dis- 
tributions are to be obtained. Another goal in deriving 
this particular distribution is that it is the cornerstone 
on which the theory of the four-phase structure 
invariants, ~0h+~0k+~01+tPm, is properly based. In 
recent work (Hauptman, 1974a, b) the theory of these 
invariants, based on a probability distribution of three 
structure factors, was initiated. However, the more 
satisfactory theory described here, which takes into 

* This fact was pointed out to the author by Dr David Sayre 
to whom due acknowledgement is made. 
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account all mutual correlations among the seven 
related structure-factor magnitudes and their con- 
certed influence on the value of the cosine invariant 
cos (~0h Jr q~ + ~, + ~0m), leads to a better estimate for the 
value of the cosine and requires the distribution of the 
seven structure factors derived here. 

2. Joint probability distribution of the seven structure 
factors Eh, Ek, El, Era, Etl+k, Ek+l, Et+a 

Suppose that a crystal structure, consisting of N iden- 
tical atoms in the space group P1, is fixed. In much 
the same way that the Cartesian plane may be defined 
as the collection of all ordered pairs (x,y) of real 
numbers x,y, so now the fourfold Cartesian product 
S x S × S x S of reciprocal space S is defined to be the 
collection of all ordered quadruples (h,k, l,m), where 
h,k, l ,m are reciprocal vectors. Suppose next that the 
ordered quadruple of reciprocal vectors (h,k,l,m) is a 
random variable (vector) which is uniformly dis- 
tributed over the subset of S x S × S × S for which 

h + k + l + m = 0 .  (2.1) 

It should be observed that, in view of (2.1), the random 
variables h,k,l,m, the components of the ordered 
quadruple (h, k, 1, m), are not independently distributed 
in reciprocal space. Then the seven normalized struc- 
ture factors Eh, Ek, El, Era, Eh + k, Ek + ~, E1 + h, as func- 
tions of the primitive random variables h,k,l,m, are 
themselves random variables. [Note that, in view of 
(2.1), Eh+m, Ek+m, El+m are the complex conjugates 
of Ek+l, El+h, Eh+k respectively, so that nothing is 
gained by adding these three to the initial set of seven.] 
Denote by 

P= P(R1, R2, R3,R4, Ri2,  R23, R31; 

~1,  t~2, 43 '  ~4,  (~J.2, (~}23, ~31) (2.2) 

the joint probability distribution of the magnitudes 
IEd,IE,.I,IE, I,IE.,I, IEh+kI,IEk+d,IE~+hl and the phases 
~0h, q~k, qh,~m,~n+k,q~k+~,fP~+h of the seven structure 
factors Eh, G,, El, Era, Eh + k, Ek + l, E! + h- Then, following 
Karle & Hauptman (1958), P is given by the fourteen- 
fold integral, 

,, 

RIRzRaRaRlzR23R31 i °° 
P = (270 i4 m,o2,o3,e4,¢ 12,e23,~.31= 0 

X k010203~4~)12Q23~031 
01 02 03 04 012 023 031 ~ 0  • ~ ~ ~ ~ ~ 

× exp ( -  i[Rlo~ cos (0~ - ~1) + R202 cos (02- ~2) 

-~-R3~o 3 cos  (0 3 - -~3) - [ -R4~4  cos  (0 4 - ~ 4 )  

Jr RlZQX2 cos  (012 -- ~)12) Jr Rz3Q23 cos  (023 - ~23) 
N 

+-R31e31 cos (03,.- ~30]) rt g,~ 
2=1 

x d~id~2dQ3d~4d~i2d~z3d~031 

X dOidOzdO3dO4dOi2dO23dOai (2.3) 

where 

g~ = g(r~; Ql, ~2, Q3, ~)4, ~12, ~23, ~)31 ; 

01,02,03,04,012,023,031) 

= exp -~Trf {0~ cos (2r&. r ~ -  01) 

+ Q2 cos (2r&. r , l -  02)+ Q3 cos (2rd. rx-03) 

+04 cos [2~(h+k+l)- r~+041 

+ 0~2 cos [2rc~ + k ) .  r ~ -  0,2] 

-~- ~23 COS [2rc(k + 1). rx - 023] 

+03t cos [2zffl+h). ri--03i]}X)h.U. 1, / 
(2.4) 

in which r;. is the position vector of the atom labeled 2 
and the average is taken over all vectors h,k,l  in 
reciprocal space. The mathematical Appendices I-IV 
contain, respectively, I: some preliminary formulas, 

N 
II: the derivation of g,~, III: the derivation of YI g~, 

2=1 

and IV: a brief description of the techniques required 
to evaluate the fourteenfold integral (2.3). Only the 
final formula, the chief result of the present paper, is 
written down here: 

p = RiR2R3R4R12R23R3~ 
7¢ 7 

× e x p {  R~-  R22 - R~-  R24 - 02 02 o'- -- .l~,12m ax23 -- aX3l 

2RIR2RI2 
+ N ~ / ~ -  cos (~l + ~ 2 -  ~lz) 

2R3R4Ri2 
+ N----~/2 cos  (~3  ~1_ ~4  .ql_ ~12) 

2R2R3R23 
-[- NIl2----- cos  (~2  "Jr- ~3  -- ¢~23) 

2RIRaR23 
"~- N I / ~  cos  ((P1-3F (J~)4 jr  (~)23) 

2RiR3R3i 
+ NX~/~ cos ( ~  + ~ 3 -  ~3x) 

2RzR4R31 
+ N~/~-  cos (42 + 44+ 431) 

2RiRaRi2R23 
. . . . . .  COS (~1  -- ~3  -- !~)12-[- ~23) 

N 

2RzRaRlzR23 
. . . . . . . . . . . . . . .  COS ( ~ 2 -  ~ 4 -  ~ 1 2 -  ~23) 

N 

2RiRzR23R31 
-- COS ( 4  1 -- ~2  71- !~}23- !~)31) 

N 

2R3R4Rz3R31 
- cos ( ~ 3 -  ~ 4 -  4 2 3 -  431) 

N 
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2R2R3RalR12 
- ~ - -  cos ( 4 2 -  ~3 + 43~ - ~12) 

2R1R4R31Ra2 
- N ................ COS ((~1 - -  4 4 -  ~31 - -  4 1 2 )  

4RxR2R3R4 } 
- N c o s  ( t i l l  -[- t~2 -[- t~3 --[- t~4) 

(2.5) 

where O(1/N) represents terms of order 1/N or higher 
in which the terms of order 1/N are independent of the 
• 's. Particularly noteworthy (in view of § 3) is the 
numerical coefficient, - 4 ,  of the last term in the 
argument of the exponential function of (2.5). It should 
also be noted that the exponent in (2.5) is a quartic 
(not quadratic) polynomial in the R's with coefficients 
consisting of all the possible three or four phase 
cosine invariants which can be constructed from the 
seven phase variables ~1, ~2, ~a, 44,tP12,t~23,t~31" 

illustrated in their derivation presumably may be 
carried over without essential change in order to derive 
almost any conceivable distribution involving an 
arbitrary set of structure factors and dependent on an 
arbitrary number of primitive random variables. It is 
anticipated that suitably chosen distributions will 
serve as the starting point from which estimates for 
the cosine invariants, in terms of an arbitrary number 
of structure-factor magnitudes, may be obtained. In 
fact the distributions derived here already begin to 
serve this purpose. As shown in the following paper 
(Hauptman, 1975), (2.5) leads directly to the condi- 
tional distribution of the structure invariant ~0= 
~0h + ~0k + ~0~ + ~0,, from which an estimate for cos ~, 
dependent on the seven magnitudes IEhl, lEkl, lEd, 
IEml, IE~+kl, IEk+ll, IEl+ml, may be found. Since these 
particular cosines have already proved to be useful in 
the applications (e.g. DeTitta, Edmonds, Langs & 
Hauptman, 1974; Einspahr, Gartland, Freeman & 
Schenk, 1974) it is anticipated that the improved theory 
based on (2.5) will find early application. 

3. Joint probability distibution of the four structure 
factors Eh,Ek,E, Em 

Under the same hypotheses as in § 2 and using similar 
notation and methods, one readily finds 

The author wishes to thank Drs George DeTitta, 
Edward Green and David Langs for a number of 
stimulating discussions. This research was supported 
by DHEW Grants Nos. RR05716 and HL15378 and 
NSF Grant No. MPS73-04992. 

P(R. R2,  R3,  R 4 ;  ~ 1 ,  ~D2,t~3, ~ 4 )  = RIRzRaR4 
7c 4 

× exp ~-R2-RZ-R~-R2+ 2R~R2RaR4 
t N 

× cos (41-Jr-~2-Jr-~3-1-~4) } { 1 q-O ( 1 ) } ,  (3.1) 

where again O(1/N) represents terms of order 1/N or 
higher in which the terms of order 1IN are independent 
of the ~'s. The numerical coefficient, +2,  of the last 
term in the exponent of (3.1) is to be compared with 
the corresponding coefficient, - 4 ,  of the last term in 
the exponent of (2.5). It follows, as shown in the 
accompanying paper (Hauptman, 1975), that (3.1) 
can lead only to a positive estimate, dependent on four 
magnitudes, for the cosine invariant cos (~0a + q)k + ~0~ + 
~0m) but (2.5), dependent on the presumed known 
values of the seven (rather than only four) related 
structure-factor magnitudes, may lead to any estimate 
between - 1  and + 1 for the value of this cosine. 

4. Concluding remarks 

In contrast to previously derived distributions in which 
only the single reciprocal vector k had been assumed 
to be the primitive random variable, here joint prob- 
ability distributions of seven and four structure factors 
have been obtained on the basis that four reciprocal 
vectors h,k,l ,m, subject to (2.1), are the primitive 
random variables. The mathematical techniques 

APPENDIX I 
Some preliminary formulas 

From elementary trigonometry 

A u exp {i(~o+o~u)}=Xex p {i((o+~)}, (I.1) 
g 

where X and ~ are determined by 

X= A,Av cos (~u-~v) , (I.2) 

X exp (i~)= ~ A u exp (i0c,). (I.3) 
/z 

Referring to Watson (1958, pp. 20, 21), infer that 

1 12~ exp (iz cos r;) cos m~0d~0 = imJr,,(z), (I.4) 
2~ o 

where Jm(z) is the Bessel function of order m, so that 
the right side of (I.4) may be interpreted as the average 
value of the integrand on the left provided that (p is 
assumed to be a random variable which is uniformly 
distributed in the interval (0,2r0. Evidently also, 

2re exp (iz COS ~0) m~0d~0=0. (I.5) s i n  
o 

The addition theorem for Bessel functions may be 
written (Watson, 1958, p. 359) 

Jv (( g2"~-Z2"q-2ZZ COS (fl)l]2) [Z+ z exp !_--_i~o) ]'/2~ 
\ Z +  z exp (i~0) / 

o o  

= ~ ( -  1)"Jv+m(Z)Jm(Z) exp (im~o). (I.6) 
m ~ - m o o  

A C 31A - 10 
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The Taylor  expansion of the Bessel function may 
be written (Watson, 1958, p. 40) 

Jra(Z)__ (1z)m { (½Z)2 
F ( m + l )  1 -  1 . ( m + l )  

(½z)4 . } .  (1.7) 
-t- 1 . 2 . ( m + l ) ( m + 2 ) - ' "  

Finally, Weber 's  first exponential integral (Watson, 
1958, p. 393), 

1 a 2 
I o  exp (-pt2)Jo(at)tdt= -2p exp ( -  ~ - ) ,  (1.8) 

also finds impor tant  application in the sequel. 

A P P E N D I X  l I  
The  derivation o f  gx 

Suppressing the index 2 of the vector r in (2.4) and 
combining by means of (I. 1)-(I.3), the four terms in the 
exponent of (2.4) which involve l, one finds 

i 
N1/2 {03 COS (2hi .  r - 0 3 ) + 0 4  cos [2 rc (h+k+l ) .  r + 0 4 ]  

+ 023 cos [2rc(k + 1). r -  023] 

+031[cos 2zc(l+h).  r -  03d} 

i 
- N-i~- X c o s  (2M. r + ~ )  (II.1) 

where 

2q_ 2 X =  {03 04 + 0223 -t- 0~1 -t- 20304 

x cos [2zc(h + k ) .  r + 03 + 041 

-'k 203023 COS (2Z&. r + 03-- 023) 

+ 20303t cos (2rch. r + 03 - 030 

+ 204023 cos (2z~h. r + 04 + 023) 

n t- 204031 COS (2zck. r + 04 + 031) 

+ 2023031 cos [ 2 " ( h - k ) .  r + O23-031]} /2, (11.2) 

X exp (i~) = 03 exp ( -  i03) + 04 exp i[2rc(h + k ) .  r + 04] 

+ 023 exp i(2rck, r -023)  

+031 exp i (2zh,  r -  031) (11,3) 

so that  X and ~ are independent of ! but not of h or k. 
Then (2.4) becomes 

( { i  gx= exp ~ [01 cos (2~zh. r - 0 1 )  

Assume that  the three components  of r are linearly 
independent, i.e. that no linear combinat ion of these 
components  with integer coefficients not all zero is 
equal to an integer. Since I is assumed to be uniformly 
distributed throughout  reciprocal space, it follows that  
the fractional part  of 1. r is uniformly distributed in 
the interval (0, 1) [see e.g. Hauptman  & Karle (1953), 
Appendix]. Since X and { are independent of 1, the 
average over 1 in (I1.4) is readily carried out by means 
of (1.4): 

( { i  gz = exp ~ [Or cos (2rch. r - 0 1 )  

+02 cos (2z~k. r -  02) +012 

x cos (2rc(h+k) .  r -  01z)] } J0 ( ~ / 2 ) )  h,k. 

(II.5) 

In order to carry out the average over k it is necessary 
first to analyze X since, as reference to (II.2) shows, 
X depends on k. Using (I.1)-0.3), combine the four 
terms involving k under the radical of  X as follows: 

20304 COS [2rc(h + k ) .  r + 03 + 0+] 

-t- 203023 COS (2Z&. r + 03 - 023) 

+ 204031 cos (2z&. r + 04 + 030 

q- 2023031 COS [2re(-- h + k ) .  r -  023 + 031] 

= 2 Y cos (2r&. r + ~/) (11.6) 

where 

,.~2,.~2 ._}.. ,.~2 ,,~2 
r =  [0 04 +  23 31 

+ 20104023 COS (2rch. r + 04 JI- 023 ) 
+ 203042031 cos (2~rh. r + 03 - 031) 

+ 20304023031 COS (4zch. r + 03 + 04 + 023 - 031) 

-1- 20304023031 COS (03--04--023--031)  

+ 2030223031 cos (2rch. r + 03 - 031) 

+ 2040230~1 COS (2~zh. r + 04 + 023)] 1/2, 

Y exp (iq)=0304 exp [i(2nh. r + 03 + 04)] 

+ 03023 exp [i(03-023)] 

~- 04031 exp [i(04+031)] 
+ 02303~ exp [ - i ( 2 n h .  r +023-031)]. 

(II.7) 

(II.8) 

If xl and x2 are defined by 

X1 = [0] q- 0321 "Jr- 203031 COS (2z~h. r + 0 3 -  031)] 1/2 01.9) 

X 2 = [042 + 023 + 204023 COS (2~zh. r + 04 + 023)] 1/2, (II. 10) 

+ 02 cos (2rck. r -  02) + 012 cos [2~z0a + k ) .  r - 012) 

+ X  cos (2hi.  r + ~ ) ] } ) h . k . , .  (II.4) 

then the six terms not involving k under the radical of  
X in (II.2) may be written 

x 2 + xl (II. 11) 
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and, as reference to (11.7) shows, 

x~xz= Y. (11.12) 

Hence, in view of (11.2) and (II.6), X may be written 

X= [X21 + X~2 + 2×iX2 COS (2z~k. r + 17)] v2. (II. 13) 

Then, from (I.6) with v=0,  

J0 X = ~ (_ l )Uj  a xt Ju x2 
/ l =  - - o o  

× exp [ip(2~zk. r + r/)], (II.14) 

and (11.5) becomes 

gx= ~ ( -1 )"  exp [01 cos (2z~h.r-01) 
/t~ --00 

-~-02 COS (27~k. r-02) 

21-012 COS (2z~(h+k). r -  012)]} 

x J .  ~ J .  - ~  exp[ip(2zck.r+q)] h,k, 

(11.15) 

where xl, x2, and r/ are given by (II.9), (II.10) and 
(II.7), (II.8) respectively and are seen to be independent 
of k. 

The two cosine terms involving k in the exponent of 
(II. 15) may be combined by (I. 1)-(I.3) as follows: 

i 
Nt/2 {02 COS (2z&. r - - 0 2 ) + 0 1 2  cos [2rc(h+k). r 

i 
-012]} = N~/--------~ Z cos (2zck. r + 0  (11.16) 

where 

2@ 2 (2z~h .r+02 012)] 1/2, (11.17) Z =  [02 012+ 202012 COS 

Z exp (i0 = 02 exp ( -  i02) + 012 exp [i(2xh. r -  012)]. 
(11.18) 

Hence, substituting from (II.16) into (II.15), (II.15) 
finally becomes 

g~= ~ ( -1 )"  exp 0t c o s ( 2 n h . r - 0 1  

(xl) (x2) {iz 
x J .  --N-iv J .  ~ exp --N-i-~cos(2zck.r 

+ O + ip(2z~k . r + O}exp [ilzf~--Ol)h,k, 

(II.19) 

where xl, x2, Z ,  ~ and r/ are independent of k as 
reference to (II.9), (II.10), (II.17), tlI.18), (11.7) and 
(11.8) shows. Hence, employing (1.4) and (1.5) the 
average of (11.19) over k is readily carried out: 

g,~= ~ ( -  i) u exp 01cos(2zrh-r  

Z 

in which r/, (, x ,  x2 and Z all depend on h. It remains 
to carry out the final average over h. 

In view of (II.9), (11.10) and (II.17), (I.6) implies 

Ju (~x/2)  = ~ 03+031_exp_[i(2rch.r+Oa-Ozt)] }1/2/.t 

[ 03 + 031 exp [ - - -~1~ .  r 5r-03-- 0--~[)] 

It I = - - 0 o  

[ 031 
× JUl ~ N1/2 ] exp [i/q(2~zh. r + 03-  030], 

(I1.21) 

Ju ( -~12 /z )=[  04 + 023 exp [i(2rch " r +.q4 + 023)] i 1/2u 
[04 dr" 023 exp [ -  i(2xh, r + 04 "1- 0Z3)] j 

× ~ (__ 1).2ju +u 2 04 
/ t  2 = - - o o  

[ 023 × J~2 \ NI,~ ! exp [/m(2~h. r + 0, + 023)], 

(11.22) 

J~,(Z) = ~ _02 + 0~2_ exp_ [i(2rch. _r + ~_--__01z)] .~1/2. 
1.02 +012 exp [--/(-~l~. r +02- -012) ] /  

× ~ (-1;J.+v -N-~ Jv ~-~-~j 

x exp [iv(2nh. r + 02 -- 012)] • (II.23) 

Multiplying (11.8) by the complex conjugate of (II.18) 
and raising both sides to the/zth power, it is readily 
verified that 

exp [ip(r/- 0] = exp [i/~(2zrh. r +02 +03 +04)]/(YZ)" 

X {03+031 exp [-i(2zch. r + 03-  03,)]}" 

x {04 + 023 exp [ -  i(2zch, r + 04 + 023)]} u 

x {02 + 012 exp [ -  i(2nh, r + 02 - 012)]} ". (II.24) 

Substituting from (II.21)-(II.24) into (II.20), one finds 

A C 31A - 10" 
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c o  

g~ 
p , , p , l , / . t 2 ,  v = -- 0o \ 

x {Q2 + Q2 + 203Qaa cos (2~zh. r + 03 - 030}"/2 

× (QI + Q23 + 2Q4Q23 cos (2rrh. r + 04 + 023)}"/2 

x {Q22 +022 + 2Q2012 cos (2zch. r +02-012)} u/2 

x J , + ,  ~ & ~--N-27~1 exp {2zci(lul+Iz2+v)h.r+ilq(O3-OaO+ilt2(O4+O2a) 

({ '  ) ( -  i)" exp ~ Qx cos (2zch. r - 01) + i/z(2rch, r + 02 + 03 + 04) 

(YZ)" 

+ iv(O2--Ot2)})h. (II.25) 

However it is readily verified from (11.7) and (11.17) 
that 

( r Z ) "  = {02 +Q21 + 2Q3Qal cos (2zch. r + 0 3 -  03t)} "/2 

X {Q42 + 0223 --~ 2Q4e23  COS (2rch. r + 04 + 023)}tt /2 

x {022 +e22 + 2e2Qx2 cos (2~zh. r + 0 2 -  0~2)} "/2. 

(II.26) 

Hence, substituting from (II.26) into (II.25), 

( -  i )" ( - 1 ),1 +,2 +~ -K/--/z- g a 
pdtl,t t2,V = -- oo 

[ 031 ~ 04 "1"2 \ N,/2 ] x J., ~ ,~w-/J .+ . ,  

x du+~ ~ dv \ Na/2 ] exp ~ Q ~  

x cos (2zch. r -  01) + i(/t + / q  +/t2 + v) 

x (2zch. r -  01)} exp {ilt(O 1 + 02 + 03 + 04) 
J 

+ i~1(01 + 03-030 + i/~2(01 + 04 + 023) 

+ iv(01 + 02-01,)})h. (II.27) 

Replace /q  by 0,/12 by a and employ (I.4) and (I.5) to 
evaluate the average over h in (II.27): 

g~= ~ (_i)v+o+,ju Q1 +v+O+a l~- 
fl.V.Q,O" = - -  oo  

× Jv ~N1/2] Ja I~NX/2] do ~ml/2] 

x exp {ilz(Ol+O2+O3+O4)+iv(Ol+O2-Oa2) 

+ia(O~+O4+O23)+iQ(Oa+03-030} , (II.28) 

which is seen to be independent of 2. Finally, retaining 
terms up to and including terms of order 1IN 2, it is 
readily verified that p, v, o, a take on the 27 sets of 
values shown in Table 1. 

Table 1. The 27 sets o f  values for / t , v ,Q ,a  used in (II.28) to insure accuracy to order 1IN 2 

p 0 0 0 0 0 0 0 1 - 1  1 - 1  1 - 1  1 - 1  
v 0 0 0 0 0 1 - 1  0 0 0 0 0 0 - 1  1 
e 0 0 0 1 - 1  0 0 0 0 0 0 - 1  1 0 0 
a 0 1 --1 0 0 0 0 0 0 --1 1 0 0 0 0 

lz 0 0 0 0 0 0 1 --1 1 --1 1 --1 
v 1 --1 1 --1 0 0 - 1  1 - 1  1 0 0 
0 --1 1 0 0 1 --1 --1 1 0 0 --1 1 

0 0 --1 1 --1 1 0 0 --1 1 --1 1 
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Hence gx finally becomes 

( 0 1 )  Q2 ) ( 0 3 )  ~4 ) /  ~12 ~ (i ~23 ~ / 031 ~ 
gx~ Jo ~ Jo ( ~  Jo ~ Jo (-~iTY Jo \NI/a] Jo \--NiT-Z] Jo \NU2 ] 

-2iS1 ( ~ )  Yo (-~/2) Yo (-~/2) "11 ( ~ )  Yo ~--~-~] ,11 k--~-~] Jo \N1/2] 

( ~12 ~ (_623 _~ (~31 --2iJ1 (~1/2) Jo (~1/2) ,]'1 (~1/2) Jo (-~1/2) Jo 1~N1/2] Jo \N1/2 ],11 ,--~iYi] 

--2iJ1 ( ~ )  ,11 ( ~ )  Jo (-~1/2) Jo ( ~ )  J* ,--N5~] Jo , ~ ]  Jo ,NI/2] 

- 2iJo (~1/2 ) "]1 (~1/2 ) J1 ( ~ )  Jo ( ~ )  Jo ,N1/2] J1 ,N1/2] Jo \N1/2] 

( 012 ~ ( 023 ~ ( 031 ~ 

( 012 ~ ( 023 ~ ( 031 ~ --2iJo (~11/2)Jo (~12/2)J1 ( ~ ) J 1  (-~14/2)J1 ~gl/2 )Jo  ~ ]  Jo ~gl/2] 

( 6 1 )  ( Q 2 ) ( 0 3 ) (  ~)4 ) /  012 ~ /. ~23 ~ / 031 ~ + 2Ji ~ Jz ~ ,11 ~ Jl ~ Jo ~N~/2] Jo ~N1/2] Jo k ~ ]  

61 ) ( 0 2 )  0 4 )  / 012 ~ / 023 ~ / 031 ~ 

( 612 ~ ( ~23 ~ [ 631 ~ 
q-2Jo (~1/2) J1 (~/2) Jo (~1/2) J1 (-~1/2) .]'1 \N1/21 ']1 ~ , ~ ]  Jo ~N1/2] 

{ 012 

/ 012 ~ + 

i ~ ' 61 (N~2/2) St (--N~'I~)So (~14/2)Sl (\NI/21012 + Jo 

( 012 ~ + (  4,2)So 

J1 ~ N1/2 ] "11 \ ~ 1  

/ 023 ~ / Q31 ~ 
Jo ~, N1~2 ) or1 \ ~ )  

/ ~23 ~ { ~31 ~ 
• 11 I~ N 1/2 ] Jo \ N1/2 ] 

( 023 ~ ( e31 ~ 
Jl ~ N1/2 ] Jl ~ N1/2 1 

COS (01 + 04 "~ 023 ) 

cos (01 + 03-  031) 

cos (01 + 02-  012) 

cos (02 + 03-  023) 

cos (02 + 04 + 031) 

COS (03 -a t- 0 4 "-~ 012 ) 

cos (0~ + 02 + 03 + 04) 

cos (02-03 + 031- 0~2) 

COS (0 2 -  0 4 -- 01, -- 023 ) 

cos (03-04-023-031) 

COS (01--04--031--012) 

cos (01- 03 -  012+ 023) 

COS (01-- 02+ 023-- 031 ). 

(II.29) 

APPENDIX m 

N 
The derivation of H g~ 

2=1 

Employing (I.7), (11.29) becomes 

1 
= "4- ~12 71- ~23 "]- ~21) g~ 1 - ~ - ~ ( e ~ + o ~ + e ] + d  2 2 

i 
4N3/2 [0104623 cos (01 + 04 + 023) 

+ five similar terms] 

1 
+ ~ - ~  [QIQ203Q4 cos (01 + 0z + 03 + 04) 

"~- 62Q3Q31012 cos (02 -- 03 --]- 031 -- 012 ) 

+five similar terms] + 0 - ~  , (III,1) 

where O(1]N 2) represents terms of order 1/N 2 or 
higher in which the terms of order 1IN 2 are inde- 
pendent of the O's. Then 

N log gx= _¼(Q2 + . . . )  

i 
4N~/2 [0~04023 cos (O1 + 04 + 023)+ . . .  ] 

1 
+ - ~  D~2~304 cos (0~ + 02 + 03 + 04) + . . . ]  

+ 0 ( 1 )  (IlI.2) 
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and 

N 
II gx =g~'~ = exp (N log ga) 

2=1 

t _ ¼ ( e ~ + e ~ + e ] + e  ~ 2 Jl- e12"~-023 "4- 021) ~exp  

i 
4NU2 [0104023 COS (01+ 04"4- 023 ) 

+ ele3e3~ cos (01+ 03-  031) 
"3 I- e102~012 cos  (01 -[- 02 - 012 ) 

"1- e2e3e23 COS (02 -t- 03 -- 023 ) 

"4- e204031 COS (02 "Jl- 04 "3 I- 031 ) 

"[- e3e4e12 COS (03 "3 I- 04 "3 I- 012)] 

1 
+ g-~ [ele2e3e4 cos (01+ 02 + 03 + 04) 

"[-e2e3e31e12 COS (02--03 -1-031--012 ) 

"4- e2e4e12e23 cos  (02 - 04 - 012 - 023 ) 

~-e3e4e23e31 COS (03- -04- -  023-- 031 ) 

+ ele4e31e12 cos (01-04-031-012)  
"q-ele3e12e23 COS (01 -- 0 3 -  012 "q-023 ) 

"q- eloze23e31 cos  (01 - 02 Jr- 023 - 031)] } 

(11}  iii. ) 
where O(1/N) represents the terms of order 1/N or 
higher in which the terms of order 1/N are independent 
of the O's. 

APPENDIX IV 
Evaluating the fourteenfold integral (2.3) 

IV. 1. The 01 integration 
N 

Substitute for 17 gx from (III.3) into (2.3) and 
2=1 

combine the eight terms involving 01 in the exponent 
of the integrand as follows" 

iel { R1 c o s  (01 -- 41 )  

1 
~1. ~ ' [ 0 4 0 2 3  COS (01 "4" 04 AI- 023 ) 

+ e3e31 cos (0~ +03-031)+e2e~2 cos (01 + 02-  0~2)1 
i 

+ 8-~ [e2e3e4 cos (0~ + 02 + 03 + 04) 

"q- e4031e12 cos  (01 - 04 - 031 - 012 ) 

"t- 03012023 COS (01 -- 03 -- 012 "t- 023 ) 

"4- e2e23e31 COS (01 -- 02 "q- 023 -- 031)] t 

= -i~lX~ cos (01 +~1), (IV.l) 

where, in view of (I.1)-(I.3), 

{ X l =  R 2 -4- ~ [e4~23 cos  ( 4  1 --~ 04 --[- 023 ) 

+ e3e31 cos (41 + 03-  031) + e2e12 cos (41+ 02-  012)] 
JR1 

+ ~ [e2e3e4 cos (41 + 02 + 03 + 04) 

+ e,e31ex2 cos (41-04-031-012)  

+ e3012e23 cos (41 - 03 - 012 + 023) 

+ e2e23e31 cos (41 -02  +023-031)] 
1 

+ ~ [e3e4e23e31 cos (03- 04-  023- 031) 

+ e2e4e12e,3 cos (02-04-012-023) 

+e2e3e31012 cos (02-03 +031-012)] 

+ 0  (~-~) } 1/z (IV.2) 

Xx exp (i41) = nl exp ( -  i41) + . . .  (IV.3) 

so that X1 and ~1 are independent of el and 01 and 
O(1/N) consists of all terms of order 1/N or higher 
in which the terms of order 1/N are independent of the 
0's and the 4's. Hence, in view of (I.4) and (IV.l), the 
integration of (2.3) with respect to 0, is readily carried 
out: 

1 
P= (~n)13 RIR2R3R4R12R23R3' 

S X ele2eze4elze23e31 
Q1 .... .  Q31=o 02 .. . . .  031=o 

x exp { ¼(d+ 2 2 o ,+  o2 + d 3 + e l , )  
- -  e2 "4- e3 "4- k ' 4  ~ ' 1 2  

-- i[R202 COS (02 -- 42)  -~- R3e3 COS (03 -- 43)  

"-b R4e 4 COS (04 - 44)  "-b RI2Q12 COS (012 -- 412 ) 

"4-R23e23 COS ( 0 2 3 -  423 ) "31-.R31e31 cos  ( 0 3 1 -  ~D3,)] 

i 
4N1/2 [~2~3e23 cos  (02 -t- 03 - 023 ) 

x e2e4e31 cos  (02 -Ji- 04 -3 I- 031 ) 

-4- e3~4e12 cos  (03 -4- 04 -t- 012)] 

1 
"4- " - ~  [e2e3~31~12 cos  ( 0 2 - 0 3  --[-031-012) 

+ e2e4ex2023 cos (02-  04-  012- 023) 

.qt. 0304023031 COS (03--04--023--031)] } YO(elXl) 

x { 1 + O  ( 1 ) }  del. . .do3ld0z.. .d0~l (IV.4) 
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where O(1/N) consists of all terms of order 1/N or 
higher in which the terms of order 1IN are inde- 
pendent of the O's and the 4's.  

IV. 2. The 01 integration 

Since )(1 is independent of 0 ,  one employs (I.8) 
with p=¼, a = X ,  using (IV.2), to carry out the 01 
integration: 

1 
P -  212n1~ RIR2RaR4RlzR23R31 exp (-R~) 

I ~ f 2~ X 020304012023031 
02 . . . . .  031=0 02 . . . . .  031=0 

2+ 2+ × e x p - ¼ ( 0 ~ + 0 3  04 0~2 2 2 +023+031) 

- i[R202 cos (02 - 42) + R303 cos (03 - 43) 

+ R 4 0 4  COS (04 -- (~4) -Jl- R12012 cos  (012 - 412 ) 

+ R~30~3 cos (023- 4~3) + R31031 cos (031- 4~3] 

i 
4N1/2 [0203023 cos (02 + 0a -  023) 

"[- 0204031 COS (02 --[- 04 -'[- 031 ) 

+ o~0,0~2 cos (03 + 04 + 0~9] 

RI 
2N1/2 [04023 cos (41 + 04+ 023) 

-~- 03031 COS ( 4  1 -~" 03 -- 031) "3L 02012 COS ((~1 -[- 02--  012)] 

iR1 
4N [020304 cos (41 + 02 + 03+04) 

-1- 04031012 COS ( 4  1 -- 04 -- 031 -- 012 ) 

+ 03012023 COS ( 4  1 -- 03 -- 012 -1- 023 ) 

"[- 02023031 COS (1~ 1 -- 02 "At- 023 -- 031)] } 

x { 1 + O (--1) } d02d03d04d012d0z3d031 

× dO2dO3dO4dO~zdO23dO31, (IV.5) 

where again O(1/N) consists of those terms of order 
1/N or higher in which the terms of order 1/N are 
independent of the 0's and the 4's.  

IV.3. The remaining 12 integrations 
One continues in this way, carrying out the 

successive integrations 02, 02, 03,03, etc., until finally 
(2.5) is obtained. 

APPENDIX V 
The question of convergence 

It would be desirable to obtain an upper bound for 
O(1/N), the terms of order 1/N or higher, in (2.5). 

However the rigorous derivation of a sharp upper 
bound appears to require a subtle analysis and lengthy 
calculation which is hardly justified here. Instead only 
a brief argument is given which makes plausible the 
several approximations used. 

For fixed/t it is known that, as z approaches infinity, 

( 2 / 1/2 
]~(z)~ \~-~/ cos (z-½~-k~)-+ o, (V.1) 

(Watson, 1958, p. 195). If, on the other hand, z is 
fixed and/z  approaches infinity, then 

J~(z)~ lu-"e"(lz) u ~ (½z)" 
2]/~-/z /z! -+ 0 ,  (V.2) 

(Watson, 1958, p. 225). Hence (II.28) implies that g~ 
tends toward zero as any one of Q1/N m, Q2/N 1/2 . . . .  , 
Oal/N 1/2 approaches infinity. In view of the factor 

u 
H g,~ in the integrand of (2.3) it follows that, for large 

2=-1 
N, the integrand makes a substantial contribution to 
the value of the integral only when the Q's are in the 
neighborhood of zero (but are not necessarily small). 
More precisely, one makes an arbitrarily small error 
in (2.3) if the infinite limits of the Q integrations are 
replaced by sufficiently large but finite positive num- 
bers, provided also that N is chosen sufficiently large. 
Hence the expansions (II.29), (III.1)-(III.3) are 
justified and the error term O(1/N) in (2.5) may be 
made as small as desired provided that N is sufficiently 
large. 
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